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Introduction 

 

Pain pathways 

 

Peripheral fibers and spinal center 

 

The sensation of pain or nociception is the most distinctive of all the sensory 

modalities. By the definition of the International Association for the Study of Pain, “Pain is 

an unpleasant sensory and emotional experience associated with actual or potential tissue 

damage”. Unlike other sensory modalities, it doesn‟t have a specialized sensory organ, and 

has an urgent and primitive quality, a quality responsible for the affective and emotional 

aspect of pain perception (Kandel et al. 2000). It serves an important function, namely to 

warn the body and prevent of further injury that should be avoided or treated. However, the 

reduction of pain is often necessary in the clinical practice, which requires an overall 

knowledge about the systems responsible for the mediation of this sensation. Nociception is 

defined as "the neural processes of encoding and processing noxious stimuli”, triggers a 

variety of autonomic responses, however it does not necessarily lead to the experience of 

pain (Loeser and Treede 2008). Perception is a product of the brain‟s abstraction and 

elaboration of sensory input (Fenton 2007). 

The nociceptive system can be divided into peripheral and central components. 

Most peripherally are the specialized sensory receptors, called nociceptors. A nociceptor is 

defined as “A (sensory) receptor preferentially sensitive to a noxious stimulus or to a 

stimulus which would become noxious if prolonged” (Merskey 1986). Nociceptors are free 

nerve endings and are widely found in the skin, mucosa, membranes, deep fascias, 

connective tissues of visceral organs, ligaments and articular capsules, periosteum, 

muscles, tendons, and arterial vessels, and may respond to three types of stimuli: 

mechanical, thermal (extremes of hot and cold), and chemical substances. Based upon the 
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connecting axon, there are two major peripheral pathways: the A-delta, and C-fiber 

mediated nociception. 

 - A-delta nociceptors respond to noxious thermal or mechanical stimuli and form 

small diameter (2.0 to 6.0 µm) myelinated afferents which propagate action potentials into 

the central nervous system (CNS) at a fast speed (15-30 m/s). Activity in these afferents is 

associated with „first‟ or „fast‟ pain sensations, which are often described as „severe‟ and 

„sharp‟.  

- C-fiber afferents can respond to all types of noxious stimuli (noxious mechanical, 

thermal or chemical). They form 0.4 to 1.2 µm wide unmyelinated, slow-conducting (0.5-2 

m/s) afferent fibers. Activity in the C-fibers is associated with the „second‟ or „slow‟ pain 

sensations which are often described as „dull‟ and „aching‟. These afferents are particularly 

sensitive to endogenous algesic chemicals resulting from cell damage, including potassium, 

serotonin (5-HT), bradykinin, histamine, prostaglandins, leukotrienes and substance P. 

(Table 1.) (Johnson 1997) 

 

 

Substance Source Effect on primary afferent fibers 

K+ Damaged cells Activation 

5-HT Platelets Activation 

Bradykinin Plasma kininogen Activation 

Histamine Mast cells Activation 

Prostaglandins Arachidonic acid – damaged cells Sensitization 

Leukotrienes Arachidonic acid – damaged cells Sensitization 

Substance P Primary afferents Sensitization 

Table 1. – Naturally occurring agents that activate or sensitize nociceptors (Fields 1987) 

 

The cell bodies of the peripheral nociceptive afferents are found in the dorsal root 

ganglia (DRG) of the spinal cord and in sensory ganglia of some cranial nerves (V, IX, X).  

Neurons in the DRG can be classified as A- and B-cells. A-cells in general are larger and 

seem to equal the number of myelinated fibers, while smaller B-cells probably transmit 

noxious information to the CNS via unmyelinated axons (Tandrup 2004). Three subtypes of 
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B-cells were identified. Sugiura et al. studied the different sensory modalities of 

morphologically defined subtypes of B-cells in the DRG. High threshold mechano- and 

mechanical cold nociception are linked to B1, polymodal nociception to B2 and cooling 

reception to the B3 subtypes (Sugiura et al. 1988). 

The central afferents of these ganglion cells enter the CNS by way of dorsal root to 

terminate in the spinal cord or by way of cranial nerves to end in the brainstem, where the 

initial stages of central processing occur. Recent evidence from human and animal studies 

has significantly expanded the understanding of pain perception and has demonstrated that 

a complex series of spinal and supraspinal structures are involved in pain (Fenton 2007). 

Intrinsic neurons of the dorsal horn (DH) promote the interaction of the afferent and 

efferent fibers, and are also responsible for their transfer to supraspinal structures. 

The dorsal horn of the spinal cord has been described as a layered structure, based on 

histological sections stained for Nissl substance. The grey matter of the spinal cord consists 

of 10 laminae, including 6 in the DH (Szentágothai and Réthelyi 2002). The laminae of the 

DH can be grouped into the superficial layers (laminae I and II or the marginal zone and 

substantia gelatinosa, respectively) and the deep layers (laminae III-IV-V or the nucleus 

proprius, lamina VI or the base of the DH, the lateral spinal nucleus, nucleus caudalis, and 

some regions around the central medullary canal - lamina X) (Willis, Jr. 1988). 

Nociceptive pathways in the DH spread out to different directions through various 

excitatory and inhibitory interneurons. In view of the reception and integration of the 

afferent stimulus, neurons in the DH can be classified as interneurons that can be divided 

into interlaminar and intrasegmental intralaminar types, having inhibitory or excitatory 

characteristics; and projecting neurons that directly transmit the information to supraspinal 

centers. There are two distinct types of projecting neurons, which respond to nociceptive 

information:  

- Nociceptive specific (NS) cells are predominantly found in lamina I, II (external), 

V and VI of the DH (Willis, Jr. 1988). The sources of input for these neurons are A-delta 

and C fibers. These neurons respond only to noxious input. When activated, NS cells 

rapidly transmit information onward to the brain. 

- Wide dynamic range (WDR) cells are found in laminae I, II (external), IV, V, 

VI, X and receive noxious input from A-delta and C nociceptors and also non-noxious 
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input from large diameter A-beta (touch) fibers. These A-beta fibers normally transmit 

information about non-noxious stimuli to produce touch sensations. The main characteristic 

of WDR cells is the capacity of coding for the stimulus intensity because they show 

increasing frequencies of response from innocuous to noxious stimulation. Because of the 

convergence of noxious and non-noxious fibers, this group also plays a fundamental role in 

the mechanisms of segmental suppression of pain. 

After the direct or indirect connections with the projection neurons, the axons of 

these central nociceptive transmission cells ascend to supraspinal centers at least along five 

central pathways. 

 

Central pathways 

 

- The spinothalamic and trigeminothalamic tracts are the most prominent, direct 

nociceptive pathways, connecting the spinal cord and trigeminal nuclei with the thalamus. 

These axons project nociceptive information from the body and the head respectively, 

primarily from the NS and WDR neurons in laminae I and V of the DH (but also from 

laminae II, IV, VI, VII, VIII and X). These fibers cross the midline, and ascend in the 

anterolateral white matter of the spinal cord. Nociceptive information is projected from the 

thalamus onward to the somatosensory cortex where the sensory dimensions of pain are 

processed. This will provide information relating to the intensity, quality and location of the 

noxious stimuli. 

Based on the origin and the model of projection of these fibers, three forms of 

afferences of the spinothalamic tract can be identified. One is the neospinothalamic 

pathway or ventral spinothalamic tract, which directly projects to nuclei of the lateral 

complex of the thalamus, involved in the sensory–discriminative component of pain.  

Another is the paleospinothalamic pathway, or dorsal spinothalamic tract, which 

projects to nuclei of the posterior medial and intralaminar complex of the thalamus, 

involved in the motivational–affective aspects of pain.  
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Finally, a monosynaptic spinothalamic pathway projecting directly to the medial 

central nucleus of the thalamus is involved in the affective component of the painful 

experience. 

 - The spino-reticulo-thalamic or spinoreticular tract comprises the axons of 

neurons in laminae V, VII and VIII and also in laminae I and X. In contrast to the 

spinothalamic tract, many of the axons do not cross the midline. It ascends in the 

anterolateral quadrant of the spinal cord and terminates in the reticular formation of 

medulla and pons, and after synapses it projects to the hypothalamus and the thalamus. This 

tract is involved in the motivational-affective characteristics, as well as the neuro-

vegetative responses to pain. The real functional importance of this tract is believed to be 

due to the connections established in the brainstem because the projections to the 

intralaminar nuclei of the thalamus are sparse and probably occur by means of collateral 

branches of the spinothalamic tract. This tract is also an important pathway for the 

modulation of nociceptive information by activating brain stem structures responsible for 

descending suppression. 

- The spinomesencephalic tract comprises the axons of neurons in laminae I, II IV, 

V, VI, VII, and X. It projects in the spinotectal bundle to the deep layers of the superior 

colliculus and to the periaqueductal grey matter (PAG). The activity of this tract as well as 

the spinothalamic tract, suffers inhibitory or excitatory influences from interneurons 

activated by collateral neurons of the spinocervical tract. The spinomesencephalic tract 

together with the sacral parasympathetic nucleus and collaterals of the spinoreticular tract 

also sends projections to the parabrachial nucleus (PBN) of the pons. Since neurons of the 

PBN project to the amygdala, the major component of the limbic system, this track is 

thought to contribute to the autonomic, cardiovascular, motivational and affective 

responses to pain. However, the afferences to the amygdala and other limbic structures do 

not occur exclusively through the PBN. Direct tracts from the spinal cord to the amygdala, 

lenticular nucleus, nucleus accumbens, septum, cingular, frontal and infralimbic cortex 

have also been described. For this reason, they are considered spinal–limbic pathways by 

some authors (Gauriau and Bernard 2002, Schaible and Grubb 1993, Willis and Westlund 

1997). 
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- The spino-cervico-thalamic tract arises from neurons in the lateral cervical 

nucleus, located in the lateral white matter of the upper two cervical segments. This nucleus 

receives input from the nociceptive neurons in laminae III and IV. Most axons in the tract 

cross the midline and ascend in the medial lemniscus of the brainstem to nuclei in the 

midbrain and to the ventroposterior lateral (VPL) and posteromedial nuclei (PM) of the 

thalamus. Some axons from the nociceptive neurons project through the dorsal columns of 

the spinal cord and terminate in the cuneate and gracile nuclei of the medulla. 

- The spinohypothalamic and trigeminal-hypothalamic tracts comprise axons of 

neurons in laminae I, V, (VIII) and X. They project supraspinally to the autonomic control 

centers in the hypothalamus and are thought to activate complex neuroendocrine and 

cardiovascular responses (Kandel et al. 2000). 

 

Brainstem 

 

Brainstem sites previously thought to be primarily involved in cardiovascular function 

and autonomic regulation also have been demonstrated to play a role in the modulation of 

spinal nociceptive transmission (Jones 1992, Kwiat and Basbaum 1992). 

The concept of nociceptive gating or descending control of pain has arisen more 

than 30 years ago (Melzack and Wall 1965). The authors have phrased that nociceptive 

information impinging upon the DH of the spinal cord from the skin, viscera and other 

tissues, is not automatically transferred to higher centers. According to our recent 

knowledge, this system can either inhibit or facilitate the activity of the ascending pain 

pathways. In this respect, mechanisms of both “descending inhibition” (DI) and 

“descending facilitation” (DF) must be recognized.  

Terminals of descending pathways originating in the rostral ventromedial medulla 

(RVM), locus coeruleus (LC), the nucleus tractus solitarius (NTS), the PBN, the dorsal 

reticular nucleus (DRT) interact with afferent fibers, interneurons and projection neurons in 

the DH. Actions at these sites, as a function of the influence of individual receptors upon 

cellular excitability, either suppress or enhance passage of nociceptive information to the 

above mentioned higher centers (Millan 2002). 
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The PAG is a key relay station in the processing of nociceptive and antinociceptive 

information in the CNS. Its ventral and ventrolateral regions are widely known as key 

stations in descending pathways that act to control nociceptive inputs in the DH (Pelegrini-

da-Silva et al. 2005). GABAergic antagonists, cannabinoids, and µ-opioid agonists all 

initiate brainstem-integrated, monoaminergic mechanisms of DI via actions in this 

structure. It receives sensory information from the spinoreticular tract, afferentation from 

pain-related cortical and subcortical areas, and is thought to represent the mechanisms 

whereby cortical and other inputs act to control the nociceptive „gate‟ in the DH (Anuradha 

et al. 2004, Rainville 2002). Anatomical and physiological studies conducted throughout 

the 1970s elucidated a major pathway from the PAG to the raphe magnus and adjacent 

reticular formation of the RVM and in turn from RVM to the DH. Direct links from the 

PAG to serotonergic and nonserotonergic (e.g. opioid) neurones of the RVM, as well as to 

the noradrenergic nucleus of the medulla, are important pathways for expression of its role 

in the modulation of descending controls. Also, a small population of fibers directly 

projects from the PAG to the trigeminal nucleus and the DH.  

Therefore the termination zone of many RVM axons within the superficial and deep 

layers of the DH matched the region where nociceptors terminated, suggesting that PAG 

and RVM modulate nociception, although they do not do so specifically or exclusively. 

Studies reveal that PAG and RVM are capable of altering numerous reactions and 

responses in addition to those associated with noxious stimulation (Mason 2005, Starowicz 

et al. 2007). Although the RVM receives direct sensory input, the activity of descending 

pathways originating therein is primarily modified by afferents from the PAG, PBN and 

NTS (Fields and Basbaum 1984, Fields and Basbaum 1999, Millan 1999). Based on 

functional characteristics, several contrasting classes of neurons have been recognized in 

the RVM. First, “OFF” cells are excited by opioids and inhibited by nociceptive input. 

They display a transient interruption in their discharge immediately prior to a nociceptive 

reflex and are thought to participate in the induction of DI. Second, “ON” cells are 

inhibited by opioids and excited by nociceptive input: they are thought to trigger DF (Fields 

et al. 1991, Fields and Basbaum 1999, Mason 1999, Zhuo and Gebhart 1992).  

The locus coeruleus (LC) is considered the main noradrenergic nucleus involved in 

the ascending and descending control of pain (Stamford 1995, Zhang et al. 1997). It 
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receives its main inputs from the nucleus prepositus hypoglossi and from the PAG via the 

paragigantocellular nucleus of the ventromedial medulla. The LC sends a major pathway to 

the spinal cord, mainly to the DH. Acute impositions of high intensity noxious stimuli have 

been shown to increase the activity in the LC and the noradrenaline level in the DH 

(Chiang and Aston-Jones 1993, Crawley et al. 1979, Hong et al. 1993, Men and Matsui 

1994, Szot et al. 1993), while electrical stimulation here produced a selective inhibitory 

action on the discharge evoked by nociceptive cutaneous or visceral stimuli (Guo and Zhao 

2000, Liu et al. 2008, Margalit and Segal 1979, West et al. 1993). Under conditions of 

persistent noxious input, the potentiation of descending noradrenergic input to the DH is 

pronounced and plays a major role in the moderation of pain (Milne et al. 2001). 

 

Thalamus 

 

The thalamus has been long regarded as the key relay structure for the supraspinal 

receipt, integration and onward transfer of nociceptive information. The different 

projections to its nuclei and from them to the cortex define the functional circuitry of pain 

processing. It encodes information concerning the type, temporal pattern, intensity and 

topographic localization of pain. Further, it interlinks with cortical and limbic structures 

responsible for both the sensory-discriminative and emotional dimensions of pain (Millan 

1999). In the thalamus, two groups of nuclei are particularly important in the processing of 

nociceptive information: the lateral and medial nuclear groups. 

The lateral nuclear group comprises the ventroposteromedial nuclei (VPM), receiving 

input from the head through the trigemino-thalamic pathway, the ventroposterolateral 

(VPL) and the ventroposteroinferior (VPI) nuclei comprising afferentation from the body 

and limbs via the spinothalamic tract. Neurons in these nuclei respond to both thermal and 

mechanical stimuli and show a somatotopic organization. The receptor fields in VPI are 

larger than those in VPL and VPM, and connections of neurons here with the secondary 

somatosensory cortex (SII) suggest different forms of processing with respect to the 

sensory-discriminative and affective-cognitive aspects of pain. The VPL and the VPM as 

the main somatosensory relays process noxious and innocuous information of cutaneous, 
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muscular, articular and visceral origin. Through the interconnections of primary 

somatosensory cortex (SI), these nuclei are responsible for the localization and intensity of 

pain. Neurons of the VPL and VPM are predominantly of the WDR type, they contribute to 

the sensory-discriminative aspects of thermal, mechanical and tactile information, but 

through its interconnections with the prefrontal cortex, parabrachial region, amygdala, 

hypothalamus and PAG, they are also involved in the emotional and autonomic responses 

of pain. 

The medial nuclear group of the thalamus comprises the posterior complex, consisting 

of the pulvinar oral nucleus, posterior nucleus and the posterior ventromedial nucleus, as 

well as the dorsal medial, central lateral and the intralaminar nuclei of the thalamus (medial 

complex). These nuclei receive input mostly from neurons in laminae I and V of the DH 

through the spinothalamic tract, and laminae VII and VIII. These afferentations indicate 

that nuclei here play a central role in the integration of painful information. 

Interconnections of this group with the insular and cingulate cortex suggest that it 

contributes to the emotional and affective-cognitive components of pain. The posterior 

region of the thalamus receives nociceptive information from the spinal cord by both the 

spinothalamic and spinomesencephalic tracts and its output is to the anterior cingulate 

cortex, an area with a signal processing role in nociception. The medial complex has 

similar projections to these limbic centers, but also includes structures, such as the striatum 

and cerebellum, responsible for arousal and motor responses. 

 

Higher pain-related centers in the brain 

 

Along with the linearly organized pathway model, the idea of parallel and 

bidirectional (down-up and up-down) processing of nociception appears to be more in line 

with the recently acquired information by recent imaging techniques (PET, SPECT, fMRI) 

on the pain network in the brain (Treede and Lenz 2006). These techniques can provide 

indirect measures of local brain activity, and made it possible to produce maps representing 

changes in the cortex, during painful stimulation. 
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Neurons in several regions of the cerebral cortex respond selectively to nociceptive 

input. Although some experimenters have different results when comparing painful and 

non-painful conditions, some regions are widely agreed to contribute to nociception. They 

include principally the contralateral primary and secondary somatosensory cortices (SI and 

SII), the anterior cingulate cortex (ACC), the insular cortex (IC) and regions of the frontal 

cortex (Berman 1995). Considering afferences to thalamic nuclei and their cortical 

projections, two systems of nociceptive projections are distinguished, i.e., the lateral and 

medial systems.  

The lateral system participates directly in the sensory-discriminative attribution of 

nociception and involves thalamic nuclei projecting to NS and WDR neurons in SI and SII. 

Cell types are considered to code different modalities of nociception. Although they are 

both able to code the intensity of stimuli, this function seems to be related more to WDR 

neurons, whereas NS cells mainly act on the topographic localization of peripheral stimuli. 

In addition, nociceptive neurons located in the SII have been reported to code the painful 

stimulus in temporal terms (Timmermann et al. 2001, Treede et al. 1999). Since SI and SII 

cortices are interconnected with the posteroparietal area and the insular cortex through a 

cortico-limbic pathway, somatosensory information is associated with other sensory 

modalities and also with learning and memory. 

The medial nociceptive system has less defined projections from the medial region 

of the thalamus to SI, SII and also to limbic structures such as the IC and the ACC (Picard 

and Strick 1996). This system is considered to contribute to the motivational-affective 

component of pain, but participates in the sensory-discriminative circuitry as well. 

The ACC is part of the limbic system and is thought to be involved in processing 

the emotional component of pain. It receives anatomical projections from several sources, 

including the IC. The ACC is the most agreeable brain region activated in brain imaging 

studies of pain and pain-related activation is reported most consistently in the ventral part 

of the supracallosal ACC, in the dorso-caudal ACC, and occasionally in the perigenual area 

(Hsieh et al. 1996, Peyron et al. 2000, Price 2000). The supracallosal area may be involved 

more specifically when the afferent input is of somatic origin and has an intrinsic affective 

value, whereas the dorsal sector of the ACC may be involved when extrinsic, secondary 

affective value is attributed to stimuli, such as in cognitive studies (Rainville 2002). These 
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studies show that ACC is more directly involved in pain affect than in appreciating the 

sensory qualities of pain. Cingulotomy in patients suffering from intractable pain modifies 

emotional and behavioral reactions to pain, without impairing the ability to localize a 

painful stimulus (Ballantine et al. 1967, Foltz and White 1968).  

The IC receives direct projections from the the ventral and posterior medial thalamic 

nuclei, and processes information on the internal state of the body, thus contributing to the 

autonomic component to the overall pain response. Damage to large parts of IC has been 

found among patients with pain asymbolia (Berthier et al. 1988, Weinstein et al. 1955). 

Patients with this condition do not display behavior indicative of threat or intrusion in 

response to painful stimuli despite their capacity to still appreciate the sensory qualities of 

painful stimuli. The IC may therefore integrate the sensory, affective and cognitive 

components of nociception. 

The amygdala complex is a medial temporal lobe brain structure, which, as a part 

of the limbic system is generally believed to be involved in the neural substrates of 

emotion. The amygdala is directly linked to nociceptive centers in the spinal cord and 

brainstem through the spino-ponto-amygdaloid pathway from the pontine parabrachial area 

to the central nucleus of the amygdala (Bernard et al. 1996, Bernard and Besson 1990, 

Neugebauer and Li 2002). Apart from concerning the emotional components of pain, the 

amygdala might also be involved in learning the association between painful and neutral 

stimuli, to be able to avoid previously met aversive conditions (Buchel et al. 1999). Its 

central nucleus has direct connections with the PAG, the PBN, the thalamic nuclei and the 

IC: structures which play an important part in pain regulation (Xu et al. 2003). 

The hypothalamus is another key structure involved in pain modulation and 

transmission. Its various nuclei have been strongly implicated in fear, emotional memory 

and behavior, and autonomic and somatomotor responses to threatening stimuli. 

Descending pathways extend from hypothalamus to the brain stem. Hypothalamic fibers, 

modulating afferent noxious stimuli, project to the thalamus, medulla oblongata (including 

nuclei of the trigeminal nerve), PAG and the substantia gelatinosa of the DH of the spinal 

cord (Sawchenko and Swanson 1982). 

The hippocampus, as another part of the limbic system, participates in important 

brain functions like learning and memory, attention and arousal, and is also involved in 
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stress- and pain-related behavioral responses. Analgesia produced by intrahippocampal 

lidocaine (injected into the dentate gyrus) provides evidence of the involvement of the 

hippocampal formation in pain perception (McKenna and Melzack 1992). Nociceptive 

information is processed in distributed fashion by the hippocampus, and at least the ventral 

CA1 is implicated in nociceptive intensity-dependent integrative functions (Khanna et al. 

2004). Two kinds of pain-related neurons were found here: pain-excited neurons (PEN) and 

pain-inhibited neurons (PIN). Experimental data suggest that muscarinerg acetylcholine 

receptors (mAchRs) play an important role in the modulation of nociceptive information in 

the hippocampal formation (Jiao et al. 2009, Yang et al. 2008). 

The involvement of the basal ganglia in motor functions has been well studied. 

Evidence from neuroanatomical, neurochemical, and electrophysiological studies suggests 

that the basal ganglia are also involved in nociception. The basal ganglia circuitry plays 

role in the sensory, affective and cognitive dimensions of pain, and may also be involved in 

the modulation and sensory gating of nociceptive information (Chudler and Dong 1995). 

Some patients with basal ganglia disease (e.g., Parkinson's disease, Huntington's disease) 

have alterations in pain sensation in addition to motor abnormalities. Frequently, these 

patients have intermittent pain that is difficult to localize. Rats with a unilateral nigrostriatal 

lesion show enhanced sensitivity to a wide range of painful stimuli, of both thermal and 

mechanical nature (Saade et al. 1997, Takeda et al. 2005); the opposite effect – decreased 

pain sensitivity – can be obtained by electrical stimulation of the substantia nigra pars 

compacta or by activating striatal dopaminergic receptors (Jurna et al. 1978, Lin et al. 1981, 

Sandberg and Segal 1978). 
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Endogenous antinociceptive ligands 

 

Pain is a dynamic phenomenon resulting from the activity of both excitatory and 

inhibitory endogenous modulation systems. It is well known that a multitude of substances 

and receptors are involved in the nociceptive system, some of them increase, and others 

inhibit the pain sensation both peripherally and centrally (Furst 1999, Sandkuhler 1996). 

Virtually no ligands/receptors are to be found that have not been investigated in this 

respect. These substances, which include neurotransmitters, neuromodulators, hormones, 

cytokines, etc., can modify the activity of nerves involved in the pain pathways. One of the 

physiological functions of the endogenous system is to tonically regulate nociceptive 

transmission; therefore the ratio of the pronociceptive and antinociceptive ligands 

determines the pain sensitivity. A very exciting and rapidly developing field of pain 

research relates to the roles of different endogenous ligands, acting on different receptor 

mechanisms. These substances have potentially advantageous features: their synthesizing 

and breakdown enzymes are available in the body; therefore, they have shorter half-lives 

and lower toxicity (Kristensen et al. 1993). On the other hand, certain endogenous ligands 

have lower specificity and affinity for their receptors compared with exogenous drugs, and 

they exert their effects at several types of receptors at different parts of the body (Fields et 

al. 1991). Therefore, the net effect depends on the localization of the ligands/receptors, and 

on which receptors and where they will be influenced by a ligand.  

 

Anandamide 

 

Both natural and synthetic cannabinoids (CBs) potently reduce pain-related behavior 

(Hohmann 2002, Pertwee 2001, Walker et al. 2002). Thus, CBs are highly effective against 

thermal, mechanical and chemical pain and are comparable to opiates in both potency and 

efficacy (Walker et al. 2002). A major limitation to the potential use of CB agonists as 

therapeutic agents is the profile of side effects, which include dysphoria, effects on motor 

coordination, memory, and abuse potential (Carlini 2004). An alternative approach, which 

may avoid such side effects, is to manipulate the endogenous CB system. The 
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endocannabinoid system consists of endogenous cannabinoids, cannabinoid receptors and 

the degrading enzymes responsible for synthesis and degradation of endocannabinoids. 

Soon after the identification of the CB receptors, it was discovered that the brain produces 

endogenous cannabinoids, which are capable of activating these receptors (Devane et al. 

1992).  

CB1 receptors are present in the central nervous system and also in some peripheral 

tissues including pituitary gland, immune cells, reproductive tissues, gastrointestinal 

tissues, sympathetic ganglia, heart, lung, urinary bladder and adrenal gland (Guindon and 

Hohmann 2007, Szabo 2008). Centrally the cerebral cortex, hippocampus, lateral caudate 

putamen, substantia nigra pars reticulata, globus pallidus, entopeduncular nucleus and the 

molecular layer of the cerebellum are all populated with particularly high concentrations of 

CB1 receptors, a distribution pattern that is consistent with the well-established ability of 

cannabinoids to alter locomotor activity and produce catalepsy, particularly in rodents, and 

to impair cognition and memory. Additionally, CB1 receptors are found on pain pathways 

in the brain and spinal cord and probably also at the peripheral terminals of primary 

afferent neurons and these receptors presumably mediate cannabinoid induced analgesia 

(Pertwee 2001). CB2 receptors, on the other hand, are expressed mainly by immune cells, 

particularly those derived from macrophages, such as B-cells, natural killer cells, microglia, 

osteoclasts and osteoblasts, but it has also been identified on neurons, under certain 

conditions particularly (Pertwee 1997). A common property of CB1 and CB2 receptors 

appears to be the ability to modulate spontaneous or evoked release of chemical 

messengers, generally to suppress neuronal excitability and inhibit neurotransmission. 

These actions seem to be signaled through the inhibitory Gi and Go proteins, negatively to 

adenylate cyclase and positively to mitogen-activated protein kinase, and also to various 

ion channels, (positively to A-type and inwardly rectifying potassium channels and 

negatively to N-type and P/Q type calcium channels and to D-type and postsynaptic M-type 

potassium channels) (Howlett et al. 2004, Pertwee 1997, Pertwee 2001). Additionally CB1 

receptors can also couple to Gs proteins to activate adenylate cyclase and/or to reduce 

outward potassium current, possibly through arachidonic acid-mediated stimulation of 

protein kinase C (Demuth and Molleman 2006). However evidences exist, that cannabinoid 
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receptor signaling and G-protein coupling efficiency is not the same in all brain areas 

(Devane et al. 1992). 

The endogenous cannabinoids are lipid derivatives and a feature that distinguishes 

them from many other neuromodulators is that they are not synthesized in advance and 

stored in vesicles. Rather, their precursors exist in cell membranes and are cleaved by 

specific enzymes on demand. Endocannabinoids are released generally postsynaptically, 

and act presynaptically (Walker et al. 2005). The first endocannabinoid identified was 

arachidonoyl-ethanolamine (anandamide: AEA), isolated from porcine brain and 

characterized as an endogenous eicosanoid with moderate affinity for the CB1 and CB2 

receptors (Devane et al. 1992). Several lines of evidence suggest that AEA also activates 

other G protein-coupled receptors (GPCRs) and ion channels. The best known and 

characterised of these ion channel interactions is the activation of the transient receptor 

potential vanilloid 1 (TRPV1) by AEA (Hajos et al. 2001, Olah et al. 2001, Oz 2006, 

Tognetto et al. 2001, van der Stelt et al. 2005, Zygmunt et al. 1999). TRPV1 is a ligand-

gated nonselective cation channel that is considered to be an important integrator of various 

pain stimuli such as capsaicin, heat and low pH (Jancsó et al. 1977, Jancsó and Lawson 

1987, Kau et al. 1991, Szekely et al. 1997, Yu et al. 2003). Since CBs and TRPV1 

receptors show co-expression in brain neurons, and AEA represents “chimeric” ligand 

acting on both cannabinoid and TRPV1 receptors, their co-activations can lead to a cross-

talk between them (Starowicz et al. 2008). Some of its effects, including antinociception, 

may be at least partially due to TRPV1 activation (Di Marzo et al. 2002, Jancsó et al. 1985, 

Jancsó and Király 1980, van der Stelt and Di Marzo 2004, Zygmunt et al. 1999). Previous 

results in our laboratory have shown that spinal AEA significantly decreased inflammatory 

thermal pain sensitivity, and its effects were modified by TRPV1 antagonist capsazepine 

(CAPZ), suggesting that the effective doses of AEA influence not only cannabinoid but 

also TRPV1 receptors (Horvath et al. 2008). 
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Endomorphin 

 

Since centuries, morphine has been the gold standard for the treatment of pain, 

against which all analgesics are compared. Due to several side effects and strong abuse 

potential, it has been desirable to find a similarly efficient but possibly safer way of 

antinociception. Early efforts to understand the endogenous targets of opiate drugs led to 

the identification of receptor sites. Binding studies suggested four main classes of opioid 

receptors, named µ-, -, - and opioid receptor-like receptors. Opioid receptors comprise a 

subfamily of structurally homologous GPCRs. Activation of these receptors inhibits the 

formation of cyclic adenosine 3',5'-monophosphate (cAMP), close voltage-gated Ca
2+

-

channels and opens inwardly rectifying potassium channels (Dhawan et al. 1996, Jordan et 

al. 2000, Lambert 2008). The net effect of these cellular actions is to reduce neuronal 

excitability and neurotransmitter release.  

 Opioid receptors and their endogenous ligands are widely distributed in the 

organism, thus the activation of this system might lead to effective antinociception (Akil et 

al. 1984, Bach 1997, Basbaum and Fields 1984, Bodnar and Klein 2004, Bodnar 2008, 

Horvath 2000, Menetrey and Basbaum 1987, Palkovits 2000, Pan et al. 2008, Rittner et al. 

2008, Vaccarino et al. 2000). The antinociceptive effects are produced by peripheral, spinal 

and supraspinal levels as well (Przewlocki et al. 1999). During inflammation of the 

peripheral tissues, numerous mediators are produced by endothelial cells, resident cells, and 

leucocytes that are recruited to the site of injury. Leukocytes are the important source of the 

endogenous opioid peptides, and in peripheral inflamed tissue -endorphin, Met-

enkephalin, dynorphins and endomorphins are produced and released by these cells (Labuz 

et al. 2006, Mousa et al. 2002, Rittner et al. 2008). Opioid receptors located within the 

superficial DH, in lamina I. and particularly in lamina II, and in the DRG of sensory 

neurons undergo axonal transport to reach peripheral nerve terminals, and inflammation 

induces increases in µ-opioid receptor binding within DRG leading to an improved 

antinociceptive potency in these circumstances (Endres-Becker et al. 2007, Mousa et al. 

2007, Zollner et al. 2003). Some of the analgesic actions of opioids may be due to 

modulation of the descending pathways (originating in RVM, PAG, LC, ACC, prefrontal 
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cortex and thalamic nuclei) to reduce nociceptive transmission in the DH (Anderson et al. 

1977, Basbaum and Fields 1984).  

Twelve years ago a novel group of specific μ-opioid receptor agonist tetrapeptides 

was discovered and named endomorphins (EMs). Endomorphin-1 (EM1) and 

endomorphin-2 have been isolated first from bovine and then from human brain cortex by 

Zadina et al. (Zadina et al. 1997). Compared to morphine, they possess partial, rather than 

full agonist properties at µ-opioid receptor sites, their effects are temporary and there is also 

an evidence suggesting a plateau effect, although the potencies of the drug and the duration 

of the
 
effects seemed to depend on the species, on the applied pain

 
tests, and on the route of 

administration (Horvath et al. 1999, Stone et al. 1997). Intraplantar administration of EM1 

dose-dependently decreased the mechanical allodynia and the thermal hypersensitivity in 

neuropathic and inflammatory pain models (Labuz et al. 2006, Obara et al. 2004). 

Intracerebrovascular or intrathalamic administration of EMs produced antinociception in 

both acute and chronic pain models (Zadina et al. 1997, Zhao et al. 2007, Zubrzycka et al. 

2005, Zubrzycka and Janecka 2008). Our previous results have demonstrated that 

intrathecal administration of EM1 is an effective method of inhibiting thermal hyperalgesia 

in rats (Csullog et al. 2001, Horvath et al. 1999). 

  

Adenosine 

 

Adenosine (ADE), originating from adenosine 5-triphosphate (ATP), is recognized to 

be an important modulator of neurotransmission in many physiological functions, such as 

regulation of arousal and sleep, anxiety, cognition and memory (Dunwiddie and Masino 

2001, Haas and Selbach 2000, Sawynok and Liu 2003). It is well known that the 

stimulation of its GPCR receptors (A1, A2A, A2B and A3) modifies pain signaling, and a 

variety of molecules have been developed to provide analgesia through this non-opioid 

mechanism (Poon and Sawynok 1998, Sawynok 1998). A1 receptors are present on the cell 

body of dorsal root ganglion cells and on the central terminals of primary afferent neurons 

(Macdonald et al. 1986, Santicioli et al. 1993). The action of A1 receptor agonists appears 

to be directly on the sensory nerve terminal itself and results from inhibition of adenylate 
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cyclase and a decreased production of cAMP (Fredholm et al. 1990, Khasar et al. 1995a). 

The role of the A1 adenosine receptor in inhibiting spinal sensory transmission has been 

confirmed by the inhibitory effect of A1 analogues on the C-fiber-evoked responses of 

wind-up and postdischarge of dorsal horn neurons, associated with nociceptive information 

(Reeve and Dickenson 1995). Actions due to adenosine A2 receptor activation have been 

proposed to result from stimulation of adenylate cyclase resulting in an increase in cAMP 

levels in the sensory nerve terminal (Khasar et al. 1995b, Taiwo and Levine 1991). The 

pronociceptive actions of A3 receptor activation are mediated by an effect on mast cells to 

release histamine and 5-hydroxytryptamine (5-HT), an action likely mediated by increased 

inositol 1,4,5-triphosphate (IP3) production and enhanced intracellular Ca
2+

 (Ramkumar et 

al. 1993, Sawynok et al. 1997). A study revealed that ADE directly inhibits the TRPV1 

channel in vitro, which might influence its antinociceptive potential (Puntambekar et al. 

2004).   

However ADE analogs cause a number of side-effects and therefore cannot be used 

for pain therapy, and ADE is only slightly effective in neuropathic and inflammatory pain 

states, without influencing the normal pain sensitivity (Chiari and Eisenach 1999, Kekesi et 

al. 2004a). 

 

Interactions of ligands in pain modulation 

 

Accordingly, their effectivity might be lower than that of synthetic drugs, 

suggesting that these ligands alone would not be ideal drugs for pain therapy. Therefore, a 

good possibility for overcoming these problems might well be a combination of different 

drugs (Horvath et al. 2001, Horvath and Kekesi 2006, Kekesi et al. 2002, Kekesi et al. 

2004a). Within the endogenous ligands, endomorphins, adenosine and anandamide have 

been investigated by several authors, but their interactions have not been characterized. 

The antinociceptive interactions of ADE receptor and CB agonists with opioids 

have been widely investigated (Lavand'homme and Eisenach 1999, Welch and Eads 1999). 

It is well known that synthetic and plant-originated CBs and opioids show synergistic 

antinociceptive interactions, however the interaction of the endogenous ligands acting at 
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these receptors were not investigated. Furthermore, only a small number of studies have 

been made of the interactions of ADE or AEA with drugs acting at other receptors or 

systems, and a few data are available concerning the effects of coactivation of the ADE and 

CB receptors (Begg et al. 2002, Dar 2000, Guindon et al. 2006, Horvath and Kekesi 2006, 

Kekesi et al. 2004b, Kekesi et al. 2004a, Murillo-Rodriguez et al. 2003, Welch and Eads 

1999). 

 

Pain sensation in schizophrenia 

 

Schizophrenia is one of the most severe and debilitating psychiatric disorders and a 

major public health problem. It is a devastating neuropsychiatric syndrome that
 
typically 

strikes in late adolescence or early adulthood resulting
 
in lifelong disability. Positive or 

psychotic symptoms, including
 

delusions and hallucinations, are the most apparent 

manifestation
 
of the disorder. These emerge episodically and usually trigger

 
the first 

hospitalization in early adulthood. Chronic aspects
 

of the disorder include negative 

symptoms such as social withdrawal,
 
flattened affect, and anhedonia as well as pervasive 

cognitive
 
deficits (Schmidt et al. 2008). The lifetime prevalence worldwide is between 0.5 

and 1%, accounting for around 20% of all persons treated
 
for mental illness and it appears 

to be relatively independent of geographic, cultural and socioeconomic variables.  

Clinical reports suggest that many patients with schizophrenia are less sensitive to 

pain than other individuals; this is associated with increased morbidity and mortality 

(Dworkin 1994, Jochum et al. 2006). The absence of pain report was confirmed by clinical 

studies of pain reactivity conducted in large samples of individuals with schizophrenia in 

different medically painful conditions such as acute perforated peptic ulcer, acute 

appendicitis, ruptured appendix, peritonitis, compartment syndrome, fractures or 

myocardial infraction (El Mallakh et al. 2005, Lautenbacher and Krieg 1994, Murthy et al. 

2004, Rosenthal et al. 1990, Singh et al. 2006, Torrey 1979). Clinically, diminished pain 

sensitivity in schizophrenia has been linked to key symptoms of the disorder, such as 

positive symptoms, active flattening, and/or attention deficits. On neurobiological grounds, 

disturbances in dopamine, serotonin, glutamate and opioids have been proposed to account 
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for hypoalgesia in schizophrenia. Some authors suggest that it can be related to abnormal 

excitatory mechanisms, a different mode of pain expression due to cognitive impairments 

and disturbances of body schema, a decrease in social communication or, as described in 

most cases, any observed increase in pain perception threshold was the result of “attitude”, 

but not alteration in brain function (Kuritzky et al. 1999). Thus, the current state of science 

does not provide an unequivocal description of diminished pain sensitivity in schizophrenia 

therefore, a satisfactory explanation for hypoalgesia in schizophrenia is lacking (Potvin et 

al.).  

There are several tests to examine pain perception in schizophrenia. Most of these 

are mainly based on a psychophysical method (self measurement of pain perception using a 

scale) or a method using the signal detection theory (the pain response is measured by the 

individual‟s ability to discriminate the sensory stimuli and by response criteria reflecting 

their attitude after painful stimuli). One experimental study deserves special attention 

because it has used a neurophysiologic measure of pain reactivity, the nociceptive RIII 

reflex threshold. The RIII reflex is studied by applying percutaneous electrical stimulation 

on the sural nerve and recording the reflex motor response from the biceps femoris muscle 

(a flexor muscle). Studies conducted on healthy participants have shown that the amplitude 

of the RIII reflex is correlated proportionally with the participant‟s self-reported pain 

threshold (Guieu et al. 1994). 

However to investigate the pathophysiology and the possible medication of 

schizophrenia over the years, several effort have been made to generate a possible animal 

model that could mimic this human disease. There are three main methodical procedures 

applied mainly on rodents: neurodevelopmental, neurochemical and genetic models.  

Encompassing the neurodevelopmental hypothesis of schizophrenia, manipulation 

of the environment, triggering chronic stress, can modify young animals‟ nervous system 

and therefore produce schizophrenia like alterations. As rats represent a social species, 

interaction with other rats is essential to ensure a normal neurological and physiological 

maturation; therefore, isolation causes behavioral changes, including decreased pain 

sensitivity, increased spontaneous locomotor activity, deficits in learning and memory, and 

increased aggression to altered reactivity to external stimuli (Gentsch et al. 1988, Paulus et 

al. 2000, Varty et al. 2006, Weiss and Feldon 2001). Social isolation of animals results in 
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altered neurochemical systems such as enhanced presynaptic dopaminergic function in the 

nucleus accumbens and the prefrontal cortex, a decrease in presynaptic serotonergic 

function, and an imbalance in dopamine and 5-HT in the frontal cortex (Crespi et al. 1992, 

Fone et al. 1996, Jones et al. 1992). These behavioral and neurochemical changes have 

been suggested to be similar to the changes seen in patients with schizophrenia, thus the 

postweaning isolation housing paradigm may provide a nonpharmacological 

neurodevelopmental method of inducing schizophrenia-like behavioral deficits and has 

potential utility in the screening of novel antipsychotic drugs (Geyer et al. 1993, 

Muchimapura et al. 2003, Paulus et al. 2000, Roberts and Greene 2003, Varty et al. 1999). 

Neurochemical substances applied systemically or locally over different regions of 

the CNS are often used, either to create a psychotic state, or to study the role of different 

nuclei of the brain, through their degeneration, in the pathophysiology of schizophrenia 

respectively. The same neurodegenerative effect can be targeted when surgically destroying 

the corresponding areas of the brain. There is mounting evidence that the glutamate 

neurotransmitter system, and in particular N-methyl-D-aspartic acid (NMDA) receptor 

hypofunction, might be a contributing factor leading to symptoms of this illness (Brenner et 

al. 2007, Kristiansen et al. 2007, Muller and Schwarz 2006, Stone et al. 2007). NMDA 

receptor expression and localization is disrupted in patients with schizophrenia, and 

exposing rodents to NMDA receptor antagonists causes certain schizophrenia-like 

behaviors (Becker and Grecksch 2004, Guo et al. 2009, Kristiansen et al. 2007).  

Lately different genetic models have been used to study the pathophysiology of 

schizophrenia mainly on knock-out mice lacking enzimes or regulating proteins like 

dopamine transporter, neuregulin1, reelin or NR1 subunit of the NMDA receptor, etc. 

(Tuboly and Horvath 2009). Although these models are promising, some of them cause 

changes not found in humans, and they usually can not reproduce all of the sypmtoms of 

the disease by themselves. Therefore the combination of the above mentioned different 

methods might be a more reasonable concept. 



 28 

Aim of the studies 

 

Earlier studies proved that EM1, AEA and ADE can produce antinociceptive effects 

at spinal level. The goal of the first part of the thesis was to determine the interactions of 

AEA with EM1 and ADE in an inflammatory thermal pain model at spinal level. We also 

investigated the effects of the ADE receptor antagonist caffeine (CAFF) on the 

antinociceptive potency of AEA and ADE. Therefore, the main objectives of the first part 

of the Thesis were: 

 

1. To determine the dose–response and time course of intrathecally administered AEA and 

EM1.  

2. To characterize the interaction of EM1 and AEA. 

3. To test the antinociceptive interaction of ADE and/or CAFF with AEA. 

 

A recent study has shown that subchronic ketamine treatment and subsequent social 

isolation produces changes in pain sensitivity in adult rats (Becker et al. 2006). These data 

suggest that these manipulations in adult animals cause only slight changes in pain 

threshold, and the changes are mainly due to the isolation. Since postweaning social 

isolation is a more striking stress for juvenile animals, we supposed that combination of 

experimental approaches, that is, social isolation and treatment with the noncompetitive 

NMDA receptor antagonist ketamine in young animals might produce an animal model that 

bears more resemblance to the disease state of patients suffering from schizophrenia, at 

least in terms of pain sensitivity.  

As described above, the nociceptive pathway is now understood to be a dual system 

at each level, and the sensation of pain is considered to arrive in the CNS with the 

discriminative component of pain (“first pain”) carried separately by myelinated A -fibers 

from the effective-motivational component of pain (“second pain”) by unmyelinated C-

fibers. Rapid heating of the skin preferentially activates A -nociceptors, whereas a slower 

rate of heating preferentially activates C-fiber nociceptors (Yeomans et al. 1996, Zachariou 

et al. 1997). 

Therefore, the goals of the second part of the Thesis were: 



 29 

 

 

4. To characterize the effects of postweaning ketamine treatment, postweaning social 

isolation, and the combination of these treatments on acute heat pain sensitivity at low and 

high temperature. 

5. To determine the effect of these manipulations on heat hyperalgesia and 

6. To investigate the antihyperalgesic potency of morphine in carrageenan-induced 

inflammatory model. 
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Methods 

Intrathecal catheterization 

 

The procedures involved in animal surgery and testing were approved by the 

Institutional Animal Care Committee of the University of Szeged, Faculty of Medicine. 

Adult, male Wistar rats (224 ± 1.9 g) were anesthetized with a mixture of ketamine 

hydrochloride and xylazine (72 and 8 mg/kg intraperitoneally: i.p., respectively). An 

intrathecal catheter (PE-10 tubing) was inserted through the cisterna magna and passed 8.5 

cm caudally into the subarachnoid space (Yaksh and Rudy 1976), which served to place the 

catheter tip between Th12 and L2 vertebrae, corresponding to the spinal segments that 

innervate the hindpaws (Dobos et al. 2003). After surgery, the rats were housed 

individually, and they had free access to food and water. Rats exhibiting postoperative 

neurologic deficits (about 10%) or those that did not show paralysis of one of the hindpaws 

after 100 µg lidocaine were excluded (Dobos et al. 2003). The rats were allowed to recover 

for at least four days before the testing and were assigned randomly to the treatment groups 

(6–15 rats/group).  

 

Social Isolation and Ketamine Treatment 

 

In the 2
nd

 part of our work, after weaning (on day 21–23 of age: 1st day) male 

Wistar rats were either housed individually or grouped for 21 days in cages measuring 42 × 

15 × 12 cm
 
and 42 × 30 × 12 cm, respectively (l × w × h). The animals were treated daily 

from day 7 to day 20 with either ketamine (30 mg/kg) or saline intraperitoneally. In total, 

the rats received 14 injections. Duration of treatment was adapted from the study by Becker 

et al. (Becker et al. 2006). Four experimental groups were studied (n=9–11 

rats/housing/treatment condition): saline + non-isolated (sal-niso), ketamine + non-isolated 

(ket-niso), saline + isolated (sal-iso), and ketamine + isolated (ket-iso). Groups were 

matched according to body weight (55 ± 0.6 g). Rats were kept in a temperature controlled 
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room (22  1 ºC); food and water were available ad libitum. The cages were located 

together in racks so that auditory and olfactory contact was maintained. 

The test schedule of the experimental paradigm is presented in Fig.1. A total of 

three tail-flick test series were performed after the treatment period. The first one was 

performed 24 h after the last injection, and then all rats were rehoused in groups of 4–6 

with similar housing and treatment conditions and remained housed for the next 5 weeks. 

Two and four weeks later, tail-flick tests were repeated. By this time, ketamine was 

expected to have been cleared since ketamine administered by i.p. injection has been 

reported to have a terminal half-time of 5.4–5 h and does not significantly accumulate in 

the brain (Hijazi et al. 2003). Paw withdrawal test was carried out on the 5th week. The 

body weights of all experimental groups were measured throughout the investigation 

period. 

 

 

Figure 1. Experimental paradigm for schizophrenia model. TF: tail-flick, PWD: paw-withdrawal test.  
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Drugs 

 

The following drugs were used: ketamine hydrochloride (Calypsol, Richter Gedeon 

RT, Budapest, Hungary) morphine hydrochloride (Hungaropharma, Budapest, Hungary), 

and xylazine hydrochloride (Rompun, Bayer, Leverkusen, Germany). ADE, CAFF, EM1 

and AEA were purchased from Sigma-Aldrich (Budapest, Hungary). AEA (MW: 348 kDa) 

was dissolved in ethanol: Tween = 2:1, CAFF in ethanol, ADE and EM1 (MW: 610.7 kDa) 

in saline. Stock solution of AEA and CAFF was diluted with saline to a final concentration 

of 10% (20 µM) ethanol (and 5% Tween in the AEA solution). Intrathecally administered 

drugs were injected over 120 s in a volume of 10 µl, followed by a 10 µl flush of 

physiological saline, and vehicle (Veh) -treated animals formed the control group. In the 

schizophrenia model experiment physiological saline served as a control against ketamine 

treatment, and freshly prepared solutions were injected i.p. at a volume of 4 ml/100 g body 

weight. 

Nociceptive testing 

 

The paw-withdrawal test (PWD) was used to measure the antinociceptive effects of 

the applied substances on carrageenan-induced inflammation (Hargreaves et al. 1988). Rats 

were placed on a glass surface in a plastic chamber and were allowed to acclimatize to their 

environment for 15–30 min before testing. The baseline hindpaw withdrawal latencies (pre-

carrageenan baseline values at 180 min) were then obtained. A heat stimulus was directed 

onto the plantar surface of each hindpaw and the intensity of the thermal stimulus was 

adjusted to derive an average baseline latency of approximately 10.0 s. The cut-off time 

was set at 20 s to avoid tissue damage.  

Unilateral inflammation was induced by intraplantar injection of 2 mg carrageenan 

in 0.1 ml physiological saline into one of the hindpaws (on the paralyzed side during the 

lidocaine test; see above (Dobos et al. 2003)). This induced hyperalgesia peaking at 3-4 h 

after the injection. PWD latencies were obtained again 3 h after carrageenan injection (post-

carrageenan baseline values at 0 min). In the case of the first part of the study, AEA, EM1, 

or their combinations (for the doses applied and the number of animals see Table 2) were 
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injected after the determination of the post-carrageenan baseline value. PWD latencies were 

registered 5 min after the injection, and then every 10 min up to 70 min. As regards the 

experiments with AEA and drugs acting on ADE receptors, 400 µg CAFF or its Veh was 

injected after determination of the post-carrageenan baseline value (-20 min), the second 

injection (100 µg ADE or its Veh) 10 min later (-10 min), and the third one (100 µg AEA 

or its Veh) at 0 min. Since our earlier study showed low potency of ADE, we applied 

pretreatment with a single high dose of ADE (100 µg) (Kekesi et al. 2004a, Kekesi et al. 

2004b). The dose of CAFF administered (400 µg) was based on an earlier study (Esser and 

Sawynok 2000). The paw withdrawal latencies were registered twice between the injections 

(at -15 and – 5 min), at 5 min after the third injection, and then every 10 min until 70 min. 

In the second part of the study, the antihyperalgesic potency of morphine (1, 2, and 3 mg/kg 

subcutaneously) was determined in the same model for 120 min. 

Acute nociceptive threshold was assessed by the tail-flick test. The reaction time in 

the tail-flick test was determined by immersing the lower 5 cm portion of the tail in hot 

water (48 and 52 °C) until a tail-withdrawal response was observed (cut-off time: 20 s). 

The tail-flick latencies were obtained three times (at both temperatures consecutively) at 0, 

30, and 60 min and, since they did not differ significantly, they were averaged to establish 

the pain threshold for each group at both temperatures. There was a 30 min resting period 

between the measurements. We started the experiments at 48 
o
C then proceeded at 52 

o
C. 

 

Endomorphin-1 (µg) 

 0 0.01 0.1 1 10 

Anandamide (µg)      

0 11 8 10 11 10 

1.5 8 9 9 10 9 

10 12 8 8 8 7 

30 10 9 8 11 10 

100 7     

Table 2.   Experimental paradigm, showing the doses of EM1 and AEA, and the number of animals used in 

each group.  
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Statistical analysis 

 

Data are presented as means ± SEM. As regards the first series of experiments 

(interaction of EM and AEA), treatments generally resulted in a short-lasting effect, with 

the peak occurring at 5–10 min, therefore, their mean values (5 and 10 min) at the inflamed 

side were used for dose–effect curves and the linear regression analysis. For this analysis 

PWD latencies were transformed to % maximum possible effect (%MPE) by using the 

following formula: 

%MPE = ( observed latency – post-carrageenan baseline latency / cut off time – post-

carrageenan baseline latency ) × 100 

Dose–effect curves were constructed for both drugs and their combinations. The 35% 

effective dose (ED35) was defined as the dose that yielded 35% MPE, which means perfect 

antihyperalgesic effect. Because a higher level of the effect might also be important for 

therapeutic practice, we also determined ED60 for EM1 and the combination with AEA. 

The ED35 and ED60 values with 95% confidence intervals (CI) were calculated by linear 

regression.  

Data sets were examined by one-way and two-way analyses of variance and repeated 

measures ANOVA, while the results of social isolation/ketamine treatment were analyzed 

using three-way ANOVA (factors: housing, treatment, and time with repeated 

measurements). The significance of differences between experimental and control values 

was calculated using the Fisher LSD test for post hoc comparison. A P value less than 0.05 

was considered significant. Data were analyzed using STATISTICA 7.1. (Statsoft Inc., 

Tulsa, OK) and GraphPad Prism (GraphPad software Inc. La Jolla, California, USA) 

softwares.  
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Results 

 

Antinociceptive potency of endogenous ligands by themselves 

 

Basal thermal withdrawal latency was 9.1  0.08 s. Carrageenan caused a 

significant decrease in PWD latency at the inflamed side (3.1  0.08 s), while it did not 

significantly influence that at the noninflamed side. Because administration of Veh caused 

a slight decrease in the hyperalgesia, the treated groups were compared to the vehicle-

treated one. Anandamide caused dose-dependent antihyperalgesia (Fig. 2.). The ED35 value 

was 67.65 µg (CI: 44.92–90.37), therefore we could not calculate with ED60 value. In terms 

of its time course, the lowest dose was ineffective, but both 30 and 100 µg AEA caused 

prolonged antihyperalgesic effect through the whole investigated period. However, it 

should be mentioned that 100 µg AEA also caused temporary vocalization and excitation, 

suggesting a pain-inducing potential of AEA; therefore, the highest dose of AEA in the 

combination was 30 µg. 
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Figure 2. Time course of the effects of AEA on the noninflamed (left) and inflamed (right) sides. The arrows 

show the injections. Each point denotes the mean  SEM of the results. * indicates a significant (p < 0.05) 

difference as compared with the vehicle-treated group.  

 

Endomorphin-1 alone caused dose-dependent antinociception at both inflamed and 

noninflamed sides, that is, 0.01 µg EM1 was ineffective, while 10 µg caused not only a 

perfect relieve of hyperalgesia, but also a significant antinociception at both sides (Fig. 3.). 

Regarding the time-course effect of EM1, only 10 µg produced long-lasting 

antihyperalgesia, whereas its antinociceptive effect was short-lived (5–20 min). The ED35 

and ED60 values were 1.95 µg (CI: 0.6–3.3) and 6.95 µg (CI: 4–8.4), respectively, therefore, 

its potency was higher compared with AEA. 

As regards the effects of ADE (100 µg) and CAFF (400 µg) alone, the comparisons 

with the control group by two-way ANOVA did not reveal significant differences by 

treatments (Fig. 4).  

 

 

Figure 3. Time course of the effects of EM on the noninflamed (left) and inflamed (right) sides. The arrows 

show the injections. Each point denotes the mean  SEM of the results. * indicates a significant (p < 0.05) 

difference as compared with the vehicle-treated group.  
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Figure 4. Time course of the effects of ADE (100 µg), CAFF (400 µg) and their combination on the thermal 

hyperalgesia. The 1
st
, 2

nd
 and 3

rd
 arrows show the injection of CAFF/vehicle, ADE/vehicle and AEA/vehicle, 

respectively. The symbol * denotes a significant (p<0.05) difference as compared with the vehicle-treated 

group. The symbol x indicates a non-significant difference between the data point and the pre-carrageenan 

baseline value.  

 

Interaction of Anandamide and Endomorphin-1 

 

Regarding the interaction of these ligands, the effect of EM1 was not influenced by 

AEA at the noninflamed side; therefore results were analyzed only at the inflamed paws. 

1.5 µg AEA did not change the effects of EM1 in any doses, which is in accordance to its 

low efficacy (data not shown). The effect of 0.01 µg EM1 was increased by 10 and 30 µg 

AEA, and the combination of 0.1 µg EM1 and 30 µg AEA was more effective, than by 

themselves at 5 and 10 min after the administration of the drugs (Figs. 5., 6., 7.). Further 

combinations (Table 2.) were not more effective than EM1 by itself (data are not shown).  
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Figure 5. Time course of the antinociceptive effects of 0.01 μg EM in combination with 10 μg AEA. Each 

point denotes the mean  SEM. * indicates a significant (p < 0.05) difference compared to the EM-treated 

group. # denotes a significant difference compared to the AEA-treated treated groups. 

 

 

Figure 6. The antinociceptive effects of 0.01 μg EM in combination with 30 μg AEA. Each point denotes the 

mean  SEM. * indicates a significant (p < 0.05) difference compared to the EM-treated group. # denotes a 

significant difference compared to the AEA-treated treated groups. 
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Figure 7. Time course of the antinociceptive effects of 0.1 μg EM with 30 μg AEA. Each point denotes the 

mean  SEM. * indicates a significant (p < 0.05) difference compared to the EM-treated group. # denotes a 

significant difference compared to the AEA-treated treated groups. 

 

As the ratio of the ED35 values of EM1/AEA was 33.82, the doses of the 

combinations were calculated in this proportion (Tallarida et al. 1989). The dose–response 

curves revealed that the slopes of the dose–response curves for EM1 and cocktail did not 

differ significantly (Fig. 8.). Similarly, the ED35 and ED60 values of the combination [1.35 

(CI: 0.4–2.3) vs. 7.6 (CI: 6.1–9.1) µg] also did not differ markedly from the EM1-treated 

groups suggesting additive interaction between these ligands. 
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Figure 8.  The magnitude of the dose-dependent effects of EM and AEA alone and their combinations.  

 

Interaction of Anandamide with Drugs Acting on Adenosine Receptors 

 

The CAFF and ADE cotreatment caused a significant increase in the paw withdrawal 

latency relative to the control group, and the post-hoc analysis revealed significant 

differences at -5 and 5 min, suggesting a short-lasting effect of this combination (Fig. 4). 

Pretreatment with ADE (100 µg) or CAFF (400 µg) did not change the effect of AEA in 

lower doses (1 and 33 µg) (data not shown). However, the antihyperalgesic potential of 100 

µg AEA was decreased both by ADE and by CAFF (Figs. 9. and 10.). The time-response 

curve demonstrated that the triple combination of 100 µg AEA + ADE + CAFF was more 

effective than the combination of CAFF + ADE + Veh between 5 and 50 min, but 

comparison with the AEA-treated group showed a significant difference only 5 min after 

the last injection (Fig. 9.).  
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Figures 9., 10. Time course of the effects of double and triple combinations containing AEA. The 1
st
, 2

nd
 and 

3
rd

 arrows show the injection of CAFF/vehicle, ADE/vehicle and AEA/vehicle, respectively. The symbol * 

denotes a significant (p<0.05) difference from the correspondence group without AEA. #: significant 

difference as compared with the AEA treatment group by itself. 
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Social Isolation and Ketamine Treatment 

 

Tail-flick test 

 

As regards the tail-flick latencies at 48 °C, three-way ANOVA revealed a significant 

effect of housing (F1,38 = 17.39, p< 0.001) and time (F2,74= 25.01; p<0.001) conditions on 

pain sensitivity, but ketamine treatment did not influence it. Juvenile isolation resulted in 

lengthened tail-flick latency when compared with nonisolated rats throughout the 

investigation period (Fig. 11). However, the difference between the groups decreased on the 

35
th

 day; therefore, there were no significant differences between the four groups. In contrast, 

tail-flick latencies in both isolated groups differed significantly from niso-sal group four 

weeks later, but not from the niso-ket animals, because the latency in this group moderately 

increased. In addition, tail-flick latency was significantly longer on the 42
nd

 day when 

compared with 21
st
 and 35

th
 days in all groups, but there were no significant differences 

between the values observed on the 21
st
 and 35

th
 days. 

The tail-flick latency at 52 °C was significantly shorter when compared with 48 °C 

at each time point. Three-way ANOVA revealed a significant effect of time (F2,74=104.50, 

p<0.0001) and there was a trend toward significance in the effect of housing conditions 

(p=0.058) (Fig. 11). In all groups, the tail-flick latency was significantly longer on the 35
th

 

and 42
nd

 day when compared with that on the 21
st
 day, but there was no significant 

difference between data registered on the 35
th

 and 42
nd

 days. Thus the pattern of changes in 

tail-flick latencies differed at 48 °C and 52 °C (Figs. 11, 12). 
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Figure 11. The tail-flick latencies at 48 °C immediately, 2 and 4 weeks after cessation of social isolation 

and/or ketamine treatment. Each point denotes the mean  SEM of the results on 9–11 animals. Symbol * 

indicates a significant (p<0.05) difference between groups. Symbol # indicates a significant difference from 

the tail-flick latency determined on the 21st day. 
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Figure 12. The tail-flick latencies at 52 °C immediately, 2 and 4 weeks after cessation of social isolation 

and/or ketamine treatment. Each point denotes the mean  SEM of the results on 9–11 animals. 
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PWD test 

 

The pre-carrageenan baseline latencies did not indicate significant difference 

between the groups, but there was a trend toward significance in the effect of housing 

conditions after the administration of carrageenan on the inflamed side (p=0.14). On either 

side, 1 mg/kg morphine was ineffective in the groups, while both 2 and 3 mg/kg morphine 

caused significant increases in PWD latency at several time points (Figs. 13 and 14).  

2 mg/kg morphine produced antihyperalgesic effect in all groups except the niso-sal 

treated animals. As regards the effects of this dose on the non-inflamed side, it caused 

significant antinociception in each group. The highest dose of morphine produced 

antinociception and antihyperalgesia in all groups, and there were no significant differences 

between the groups. 
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Figure 13. Time-course of the antinociceptive effects of morphine (1, 2 and 3 mg/kg) at inflamed sides on 

paw-withdrawal test. The first arrow shows the injection of carrageenan, the second one the administration of 

morphine. Each point denotes the mean  SEM of the results in 6–8 animals. The group-symbols indicate a 

significant (p<0.05) difference compared to the post-carrageenan baseline value. 
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Figure 14. Time-course of the antinociceptive effects of morphine (1, 2 and 3 mg/kg) at non-inflamed sides 

on paw-withdrawal test. The first arrow shows the injection of carrageenan, the second one the administration 

of morphine. Each point denotes the mean  SEM of the results in 6–8 animals. The group-symbols indicate a 

significant (p<0.05) difference compared to the post-carrageenan baseline value. 



 46 

Discussion 

 

Antinociceptive potency of drugs at spinal level 

 

The results of the first part of my Thesis show that spinal AEA and EM1 dose-

dependently decreased inflammatory thermal pain sensitivity by themselves, and EM1 has 

much higher potency. ADE and CAFF alone did not induce antinociception. The 

coadministration of AEA and EM1 in different combinations revealed that only one 

cocktail showed potentiated antihyperalgesia. The effects of AEA were moderately 

influenced by ADE, CAFF and their combinations.  

As regards the action mechanism of AEA, it may produce antinociception through 

the activation of CB1 and CB2 receptors (Ahluwalia et al. 2000, Hohmann et al. 1999, 

Yaksh et al. 2006). Some data have shown that the CB1 antagonists have blocked the 

antinociceptive effects of AEA, while others indicated only partial antagonism, or even no 

inhibition at all (Di Marzo et al. 2000, Harris et al. 2001, Yaksh et al. 2006, Welch et al. 

1998). Since microglial activation is also associated with pain and CB2 receptors can 

depress immune cell activation at spinal level, it cannot be excluded that the administration 

of AEA also has anti-inflammatory potency, and this may contribute to its antinociceptive 

effects (Pertwee 2005, Romero-Sandoval and Eisenach 2007). Di Marzo et al. suggested for 

the first time that AEA at the spinal level does not produce analgesia only through CB 

receptor activation (Di Marzo et al. 2000). As AEA activates TRPV1 receptors too, its role 

in the effects of AEA should be considered (Zygmunt et al. 1999). Thus, it was observed 

that AEA at the highest dose caused temporary painful behavior, also suggesting activation 

of the TRPV1 receptors, which integrate multiple pain stimuli (Hayes and Tyers 1980, 

Jancso and Jancso-Gabor 1980). The activation of TRPV1 receptors by capsaicin not only 

induces the excitation of nociceptors and the release of pain-inducing transmitters, but also 

causes the release of endogenous antinociceptive ligands, such as beta-endorphin or 

somatostatin (Bach and Yaksh 1995b, Jancsó et al. 1985, Jancsó and Lawson 1990, 

Szolcsányi et al. 1998a). Some data suggest that TRPV1, but not CB1 receptors, are 

involved in AEA induced responses in the dorsal root primary neurons in vitro, and it has 
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been suggested that the analgesic properties of AEA are likely to be mediated, at least to 

some extent, by TRPV1 activation in vivo (Ahluwalia et al. 2003, Horvath et al. 2008, 

Jerman et al. 2002). It has been shown that low dose of capsaicin (0.25 µg intrathecally) 

induced painful behavior during the injection (similarly to AEA), but it caused short-lasting 

analgesia (5-15 min), which was decreased by CAPZ (Horvath et al. 2008). Furthermore, 

Del Carmen Garcia et al. have reported that CAPZ blocked the hypotensive effect of AEA 

(17–35 µg), demonstrating the in vivo role of TRPV1 activation in the effect of AEA at 

spinal level (del Carmen Garcia et al. 2003). It may be hypothesized that through the 

activation of CB1 receptors, AEA at low concentration decreased the transmitter release, 

while in higher doses it increased the transmitter release via the TRPV1 receptors 

(Ahluwalia et al. 2003). We presume that the acute activation of primary sensory neurons 

by high dose of AEA (100 µg) might have caused the short-lasting painful behavior, while 

the antinociceptive potential of TRPV1 receptor activation might be due to the release of 

endogenous antinociceptive ligands at spinal level (Bach and Yaksh 1995a, Szolcsányi et 

al. 1998a, Szolcsányi et al. 1998b). An additional problem is that AEA acts as a 

noncompetitive inhibitor of serotonine-3 and nicotinic acetycholine receptors, directly 

inhibits the voltage-sensitive Na
+
 channels and influences the glycine channels (Hejazi et 

al. 2006, Kim et al. 2005, Lozovaya et al. 2005, Oz et al. 2002, Oz 2006). Moreover, it is 

likely that other GPCRs are also involved in some of the actions of AEA observed in CB-

receptor knockout mice (Hajos et al. 2001, Oz 2006). In summary, several systems may be 

influenced by AEA, and their net effect may be observed under these circumstances.  

Similarly to earlier results, the administration of EM1 elicited dose-dependent 

antinociception with high potency (Csullog et al. 2001, Horvath et al. 1999, Horvath 2000, 

Tseng et al. 2000, Yu et al. 2004, Zadina et al. 1997). Some data suggested that EMs 

displayed lower potencies in the mechanical (paw pressure) test than in the heat-pain (TF) 

test in rats after intrathecal administration, but they exerted high analgesic potency in 

different inflammatory pain models as well (Csullog et al. 2001, Hao et al. 2000, Horvath et 

al. 1999, Horvath et al. 2007b, Labuz et al. 2003, Przewlocka et al. 1999, Wang et al. 

1999). Since neuropathic pain has been assumed to be resistant to treatment with opioids, it 

is of particular interest that the EMs have high potency in decreasing neuropathic pain 

(Przewlocka et al. 1999). EM1, but not EM2, dose-relatedly reduced the A -fiber evoked 
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responses, therefore, spinal EM2 exerts selective effects on noxious responses, whereas 

EM1 is non-selective (Chapman et al. 1997). These ligands by activation of µ-opioid 

receptors on primary sensory, interneurons and projecting neurons in the spinal cord inhibit 

the transmission of pain stimuli after its intrathecal administration.  

The low potency of ADE is consistent with earlier results which indicated that ADE 

was almost ineffective in different pain models, while data on the antinociceptive potential 

of CAFF are controversial and the overall evidence from clinical studies is weak (Camann 

et al. 1990, Diener et al. 2005, Chiari et al. 1999, Kekesi et al. 2004b, Kekesi et al. 2004a, 

Lavand'homme and Eisenach 1999). Animal studies have suggested that CAFF induces 

antinociception, but could inhibit the antinociceptive potential of ADE analogs (Sawynok 

and Reid 1996, Sosnowski and Yaksh 1989). Surprisingly, the coadministration of ADE 

and CAFF led to a short-lasting antihyperalgesic effect, suggesting some kind of 

potentiation between them. At first sight this is controversial, however, their interaction 

might have been complicated by the fact that they influence all types of ADE receptors 

with different affinities to the receptor subtypes, and studies have demonstrated opposing 

roles for the receptor subtypes (Patel et al. 2001, Quarta et al. 2004). Furthermore, ADE 

receptor activation decreases not only the excitatory, but also the inhibitory transmitter 

release at spinal level, which could mask its antinociceptive potential (Yang et al. 2004). 

The A1 receptor has been proposed to exist as a part of a µ opioid and α2–adrenergic 

multireceptor complex on the basis of a demonstrated cross antagonism, cross tolerance and 

cross withdrawal between these systems (Aley et al. 1995).  Stimulation of ADE receptors 

also inhibits the inflammation, therefore, this may contribute to its antinociceptive effect 

(Cronstein, 1994). Additionally, the mechanism of action of ADE may be complicated by 

its interaction with the TRPV1 receptors (Puntambekar et al. 2004). It has been shown that 

ADE and ADE analogs directly inhibit capsaicin-mediated TRPV1 activation, supporting a 

role of this nucleoside as an endogenous modulator of TRPV1. In contrast, the activation of 

TRPV1 in the spinal cord and the periphery promotes the increased release of ADE, 

possibly through increased intracellular Ca
2+

 entry through the TRPV1 (Cahill et al. 1993). 

CAFF also has several effects on other (nonadenosine receptor-related) systems which 

might be connected with pain mechanisms. Thus, it inhibits phosphodiesterases, leading to 

elevated levels of cAMP and cGMP, and it can also mobilize intracellular Ca
2+ 

stores by 
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activation of the ryanodine receptors (Mandel 2002, Sawynok 1998). All of these effects 

could influence the pain sensitivity even in opposite ways (Yoon et al. 2006). Accordingly, 

although we expected antagonism between ADE and CAFF, it may be speculated that the 

potentiation observed here might be due to the concurrent influence of the above-mentioned 

receptors/systems. The mechanism of the studied interactions should be very complex, as 

these ligands may affect multiple receptors pre- and/or postsynaptically in the spinal cord 

(Table 3.) (Hohmann et al. 1999, Schulte et al. 2003, Schulte and Fredhohn 2003, Szallasi 

et al. 1995). 

 

Ligand AEA ADE CAFF 

G-protein related 

CB1/CB2    

Other GPCRs    

A1    

A2a    

A2b    

A3    

Ion-channel 

Glycine-R    

Ryanodine-R    

NAch-R    

VGNa
+
    

5-HT3-R    

TRPV1-R    

Enzyme 

phosphodiesterase    

 

Table 3. Action mechanisms of the ligands. , : activation or inhibition by the ligand, respectively. CB1/CB2: 

cannabinoid receptor 1, 2 respectively, A: adenosine, 5-HT3-R: serotonin-3 receptor; Nach-R: nicotinic achetylcholine 

receptor, VGNa+: voltage-gated Na+ channel  
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It is well known that exogenous opioids and cannabinoids produce synergistic 

antinociceptive interaction, although in the case of the endogenous ligands only one 

combination was more effective than the endogenous ligands by themselves. The possible 

cause of this difference might be the fact that EM1 exerts effects by µ-opioid receptors, 

while AEA has much more complex effect, as discussed above. We have found that neither 

ADE nor CAFF potentiated the antinociceptive effect of AEA at spinal level in these pain 

models, and even some kind of antagonism could be found. Further, the coadministration of 

ADE and CAFF moderately modifies the antinociceptive potential of AEA. A1 receptor is 

known to be localized on the same terminals as the CB1 receptors and utilizes the same 

signal transduction cascade as the CB1 receptors (Ahluwalia et al. 2000, Coggeshall and 

Carlton 1997). Since AEA and ADE exert opposite effects on the TRPV1 receptors in vitro, 

we initially expected that the action of AEA on TRPV1 receptors would be inhibited by 

ADE. We presumed that after blockade of the ADE receptors (by CAFF), ADE would act 

mainly as a TRPV1 antagonist, and the triple combination of these drugs would therefore 

antagonize the effect of AEA on the TRPV1 receptors. Our earlier result that CAPZ 

decreased the antinociceptive potential of AEA led us to expect similar results (Horvath et 

al. 2007a). However, the triple combination did not change significantly the effectivity of 

AEA, which might be due to their multifaceted interactions. As µ-opioid, cannabinoid CB1, 

adenosine and TRPV1 receptors are expressed in the dorsal horn of the spinal cord, and 

because they are coexpressed, at least partially on primary sensory neurons, EM1, ADE and 

AEA could all regulate the release of transmitters from the sensory neurons by acting at 

these receptors (Hohmann 2002, Szallasi and Blumberg 1999). The interactions at the level 

of the signal transduction pathway on the same synapses or at different synapses are both 

plausible explanations. The results suggest that TRPV1 receptor activation by AEA might 

complicate the interaction of CB1 and µ-opioid or adenosine receptors under these 

circumstances. These effects may change the release of both excitatory and inhibitory 

transmitters presynaptically from primary sensory neurons and/or postsynaptically from the 

interneurons, and they can modify activation of the projecting neurons as well.  

An important attribute of the present potentiation is the lack of side effects (except 

in the case of AEA applied in the highest dose), suggesting that combined drug delivery 
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can, in principle, serve to enhance the therapeutic ratio of the treatment. Furthermore, the 

coadministration of endogenous ligands might simulate the physiological behavior of the 

organism. In conclusion, EM1 and AEA cotreatment may be a beneficial combination for 

pain therapy, however, ADE and AEA cotreatment will presumably not be an ideal 

combination for inflammatory pain, but further studies are required in other pain models 

(e.g. neuropathy) to explore their interactions in pain which is induced by different 

mechanisms.  
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Pain sensitivity changes in schizophrenia models 

 

This part of the thesis suggests that social isolation for three weeks after weaning 

causes a long-lasting decrease in acute heat pain sensitivity, that is, single housing 

condition produced a significant increase in the pain threshold in tail-flick test at 48 °C, and 

there was also a trend toward significance at 52 °C, suggesting a more pronounced effect 

on the C-fiber-mediated nociception. These results suggest that the equilibrium of the 

nociceptive/antinociceptive systems might have changed for a long period of time in our 

models. 

It is well-known that housing conditions are an important factor contributing to 

modifications in pain perception in animals, and our result is in concordance with earlier 

data showing that juvenile isolation caused significant changes in pain sensitivity, which 

might be due to changes mainly in the number and activity of µ-opioid receptors (DeFeudis 

et al. 1976, Puglisi-Allegra and Oliverio 1983, Szikszay and Benedek 1989, Van den Berg 

et al. 1999b). However, Becker et al. have found that isolation caused hyperalgesia in hot-

plate test, while the threshold in tail root stimulation test did not change (Becker et al. 

2006). The differences may be explained by the diversity in the organization of the tests, 

that is, hot-plate test is mainly structured supraspinally, while tail-flick test is structured 

largely at the spinal level. Furthermore, Becker et al. used adult Sprague-Dawley animals, 

and the duration of isolation was shorter (2 vs. 3 weeks), while in the present experiment, 

juvenile Wistar rats were isolated or socially housed during weeks 4–6 of age, a period with 

high levels of social play (Pellis et al. 1997, Vanderschuren et al. 1997, Weiss and Feldon 

2001). In addition, Becker et al. used social isolation after ketamine or saline treatment; 

therefore, injections and social isolation were performed consecutively instead of parallel as 

in this work. Our work focused on the responses to heat stimuli therefore, discussion of 

functional significance is confined to this sensory modality. It is well-known that C- and 

A -fibers convey different modalities of pain, that is, myelinated heat nociceptors have 

higher threshold than unmyelinated fibers (Leem et al. 1993, Treede et al. 1998). 

Furthermore, they have different chemical phenotypes, different pharmacological 
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sensitivities, and play different roles in animal models of pain (Lu et al. 2004, Lumb 2002, 

Yeomans et al. 1996). In order to directly test the hypothesis that ketamine and/or social 

isolation may exert differential control of activity evoked by different classes of 

nociceptors, we applied tail-flick tests at both low and high temperatures. The current work 

demonstrates that social isolation differentially modulates reflexes evoked by myelinated 

vs. unmyelinated heat nociceptors. Thus, juvenile isolation not only attenuated responses 

significantly evoked by unmyelinated nociceptors, but it also slightly influenced myelinated 

nociceptor-induced responses. In this model, preferential inhibition of activity evoked by 

unmyelinated heat nociceptors would increase nociceptive threshold but maintain 

transmission of high-resolution input. The nociceptive responses to both high and low rates 

of skin heating are mediated by neuronal circuits in the spinal cord, but descending control 

of spinal nociception is a major determinant of pain sensitivity (Yeomans et al. 1996). 

Activation of neurons in the PAG significantly increases response thresholds to C-fibers 

but not those to A -fibers; furthermore, PAG lesion decreased the analgesic effect of social 

isolation suggesting that PAG mediates stress-induced analgesia (McMullan and Lumb 

2006, Wiedenmayer et al. 2000). Thus, a possible explanation for our data is that juvenile 

isolation developmentally alters the maturation of this descending inhibitory system 

resulting in C-fiber-mediated hypoalgesia. Similar to pain pathways, parallel magnocellular 

and parvocellular visual pathways exist, and recent results have shown that early-stage 

perceptual dysfunctions, which may reflect the abnormality of precortical magnocellular 

pathways, are related to schizophrenia in humans (Cimmer et al. 2006, Keri et al. 2005). 

In contrast to the isolation, subchronic ketamine treatment in young animals neither 

influenced the pain sensitivity nor enhanced the effect of social isolation. At a first glance, 

this result appears surprising with regard to the established role of NMDA receptors in pain 

mechanism; however, earlier studies also have shown that ketamine does not influence 

acute pain sensitivity (Joo et al. 2000, Klimscha et al. 1998). These observations are in 

agreement with a recent study showing that ketamine by itself does not influence heat pain 

sensitivity after subchronic administration (Becker et al. 2006). Thus, it seems that 

subchronic ketamine treatment could not reproduce the hypoalgesia characterized in 

schizophrenia, while social isolation can replicate it for a long time in tail-flick test, 

suggesting that this dose and/or duration of ketamine injections do not simulate the 
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schizophrenic hypoalgesia, thus NMDA function does not play a significant role in acute 

heat pain sensitivity changes in schizophrenia. Further experiments are needed to elucidate 

whether longer treatment and/or higher dose of ketamine could lead to more pronounced 

changes in the isolation-induced hypoalgesia. 

During the paw-withdrawal test, we did not find significant differences between the 

groups as regards the basal values; however, there was a trend toward significance in the 

effect of housing conditions, on the inflammatory pain sensation. Furthermore, we found an 

increased anti-hyperalgesic effect of 2 mg/kg morphine 5 weeks after both social isolation 

and ketamine treatment. The highly test-dependent nature of pain sensitivity changes 

supports the view that the mechanisms that modulate thermal nociceptive responses evoked 

from the tail and hindpaw are not uniform (Ackley et al. 2001). Furthermore, inflammation 

significantly increases the activity of both unmyelinated and myelinated fibers, thus we 

suppose that neither social isolation nor ketamine treatment could influence significantly 

these processes for this long period (5 weeks) during carrageenan-induced inflammation 

(Coggeshall et al. 2004). Becker et al. observed increased antinociception after morphine 

administration in isolated and ketamine treated animals, but not in the other groups. 

However, they measured the effect of morphine in acute pain tests (HP, tail-root 

stimulation) immediately after the isolation, which might lead to the observed differences. 

It has been shown that juvenile isolation caused region-specific increases in the number of 

µ-opioid receptor binding sites and a general upregulation of -receptors (Van den Berg et 

al. 1999a). Similarly, Becker et al. have found that the number of opioid receptor binding 

sites and the relative efficacy of μ-opioid receptors were increased in isolated and ketamine 

pretreated rats and isolation increased their activity, which might have contributed to the 

enhanced analgesic potency of morphine (Becker et al. 2006). The involvement of opioids 

in schizophrenia is a subject of controversial discussion. Whilst some investigators have 

found different concentrations and alterations in the number of binding sites and genetic 

polymorphisms, others have reported similar levels in schizophrenics and respective control 

populations (Danos et al. 2002, Gulya 1990, Zhang et al. 2004). Thus, it has been suggested 

that hypoalgesia might be due to changes in opioid functions in both schizophrenia and in 

isolated rat models. However, since neurotransmitters and their receptors (e.g., dopamine, 



 55 

acetylcholine), which contribute to schizophrenia, also influence pain sensitivity, we should 

also be concerned about these systems (Altier and Stewart 1999, Sommer 2004). 

We observed a progressive increase in tail-flick latency in these young animals 

during our investigated period at both temperatures. Several studies have shown that 

juvenile organisms are hyperresponsive to cutaneous stimuli (Al Amin et al. 2004, Falcon 

et al. 1996). The tail-flick latency showed a progressive increase with age, where it 

increased after puberty and was maintained throughout adulthood (Al Amin et al. 2004). 

Changes in responsiveness to suprathreshold noxious stimuli involve maturation of both 

spinal and descending supraspinal structures. This work was not designed primarily to 

assess the effects of aging as the animals were tested over a short period only, while most 

of the studies reviewed by Gagliese and Melzack (2000) have their testing done over one or 

two years. However, we observed a difference in the pattern of increase of the tail-flick 

latencies between the two temperatures, that is, the A -fiber-mediated pain threshold 

increased faster, compared with the C-fiber-mediated pain sensation. The mechanisms 

underlying this difference are not completely understood, but are probably related to the 

different maturation of the central and spinal nociceptive mechanisms (Fitzgerald and 

Jennings 1999).  

In conclusion, these results show that juvenile isolation for three weeks produces a 

long-lasting decrease mainly in the C-fiber-mediated pain sensitivity, suggesting a selective 

disturbance in the different parallel sensory pathways. In addition, ketamine treatment did 

not produce effects on acute heat pain sensitivity, but potentiated the antihyperalgesic effect 

of morphine. Since both social isolation and NMDA treatment are well-known animal 

models of schizophrenia, our results showed that juvenile isolation but not ketamine 

administration could simulate hypoalgesia associated with this disease. However, ketamine 

treatment also influenced the potency of morphine, suggesting that this model also shows 

some effects on the nociceptive mechanisms. 
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General Conclusions 

 

1. We have found that the combination of the endogenous ligands EM1 and AEA 

produced additive antinociceptive interaction, thus their combination may provide a 

new and beneficial combination for pain therapy with potentially fewer side effects 

at spinal level.  

 

2. Neither ADE nor CAFF by themselves potentiated the antinociceptive effect of 

AEA at spinal level in our pain models, and even some kind of antagonism could be 

found. Further, the coadministration of ADE and CAFF moderately modified the 

antinociceptive potential of AEA. Thus, ADE and AEA cotreatment will 

presumably not be a beneficial combination for inflammatory pain, but further 

studies are required in other pain models (e.g. neuropathy) to explore their 

interactions in pain which is induced by different mechanisms.  

 

3. We wish to draw the attention to the rapidly evolving recognition that the 

endogenous ligands may exert effects on several receptors and/or systems, therefore 

we consider that their in vivo interaction must be very complex and the net outcome 

after their coadministration could not been predicted from the in vitro results.  

 

4. We firstly demonstrated that juvenile isolation for three weeks (but not ketamine 

treatment) produces a long-lasting decrease mainly in the C-fiber-mediated acute 

heat pain sensitivity, suggesting a selective disturbance in the different parallel 

sensory pathways. In addition, both treatments and their combination potentiated 

the antihyperalgesic effect of morphine. Since both social isolation and NMDA 

treatment are well-known animal models of schizophrenia, our results showed that 

these paradigms can disturb the balance between the endogenous pro- and 

antinociceptive mechanisms.  
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